在线中文分词

其它工具 0

                    

                

中文分词指的是中文在基本文法上有其特殊性而存在的分词 。

分词就是将连续的字序列按照一定的规范重新组合成语义独立词序列的过程。我们知道,在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划界,唯独词没有一个形式上的分界符,虽然英文也同样存在短语的划分问题,不过在词这一层上,中文比之英文要复杂得多、困难得多。

常见分词项目

SCWS

Hightman开发的一套基于词频词典的机械中文分词引擎,它能将一整段的汉字基本正确的切分成词。采用的是采集的词频词典,并辅以一定的专有名称,人名,地名,数字年代等规则识别来达到基本分词,经小范围测试大概准确率在 90% ~ 95% 之间,已能基本满足一些小型搜索引擎、关键字提取等场合运用。45Kb左右的文本切词时间是0.026秒,大概是1.5MB文本/秒,支持PHP4和PHP 5。

FudanNLP

FudanNLP主要是为中文自然语言处理而开发的工具包,也包含为实现这些任务的机器学习算法和数据集。本工具包及其包含数据集使用LGPL3.0许可证。开发语言为Java。功能包括中文分词等,不需要字典支持。

ICTCLAS

这是最早的中文开源分词项目之一,ICTCLAS在国内973专家组组织的评测中活动获得了第一名,在第一届国际中文处理研究机构SigHan组织的评测中都获得了多项第一名。ICTCLAS3.0分词速度单机996KB/s,分词精度98.45%,API不超过200KB,各种词典数据压缩后不到3M.ICTCLAS全部采用C/C++编写,支持Linux、FreeBSD及Windows系列操作系统,支持C/C++、C#、Delphi、Java等主流的开发语言。

HTTPCWS

HTTPCWS 是一款基于HTTP协议的开源中文分词系统,目前仅支持Linux系统。HTTPCWS 使用“ICTCLAS 3.0 2009共享版中文分词算法”的API进行分词处理,得出分词结果。HTTPCWS 将取代之前的 PHPCWS 中文分词扩展。

CC-CEDICT

一个中文词典开源项目,提供一份以汉语拼音为中文辅助的汉英辞典,截至2009年2月8日,已收录82712个单词。其词典可以用于中文分词使用,而且不存在版权问题。Chrome中文版就是使用的这个词典进行中文分词的。

IK

IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。

Paoding

Paoding(庖丁解牛分词)基于Java的开源中文分词组件,提供lucene和solr 接口,具有极 高效率高扩展性。引入隐喻,采用完全的面向对象设计,构思先进。

高效率:在PIII 1G内存个人机器上,1秒可准确分词 100万汉字。

采用基于 不限制个数的词典文件对文章进行有效切分,使能够将对词汇分类定义。

能够对未知的词汇进行合理解析。

仅支持Java语言。

MMSEG4J

MMSEG4J基于Java的开源中文分词组件,提供lucene和solr 接口:

1.mmseg4j 用 Chih-Hao Tsai 的 MMSeg 算法实现的中文分词器,并实现 lucene 的 analyzer 和 solr 的TokenizerFactory 以方便在Lucene和Solr中使用。

2.MMSeg 算法有两种分词方法:Simple和Complex,都是基于正向最大匹配。Complex 加了四个规则过虑。官方说:词语的正确识别率达到了 98.41%。mmseg4j已经实现了这两种分词算法。

盘古分词

盘古分词是一个基于.net 平台的开源中文分词组件,提供lucene(.net 版本) 和HubbleDotNet的接口

高效:Core Duo 1.8 GHz 下单线程 分词速度为 390K 字符每秒

准确:盘古分词采用字典和统计结合的分词算法,分词准确率较高。

功能:盘古分词提供中文人名识别,简繁混合分词,多元分词,英文词根化,强制一元分词,词频优先分词,停用词过滤,英文专名提取等一系列功能。

Jcseg

jcseg是使用Java开发的一个中文分词器,使用流行的mmseg算法实现。[4]

1。mmseg四种过滤算法,分词准确率达到了98.4%以上。

2。支持自定义词库。在lexicon文件夹下,可以随便添加/删除/更改词库和词库内容,并且对词库进行了分类,词库整合了《现代汉语词典》和cc-cedict辞典。

3。词条拼音和同义词支持,jcseg为所有词条标注了拼音,并且词条可以添加同义词集合,jcseg会自动将拼音和同义词加入到分词结果中。

4。中文数字和分数识别,例如:"四五十个人都来了,三十分之一。"中的"四五十"和"三十分之一",并且jcseg会自动将其转换为对应的阿拉伯数字。

5。支持中英混合词的识别。例如:B超,x射线。

6。支持基本单字单位的识别,例如2012年。

7。良好的英文支持,自动识别电子邮件,网址,分数,小数,百分数……。

8。智能圆角半角转换处理。

9。特殊字母识别:例如:Ⅰ,Ⅱ

10。特殊数字识别:例如:①,⑩

11。配对标点内容提取:例如:最好的Java书《java编程思想》,‘畅想杯黑客技术大赛’,被《,‘,“,『标点标记的内容。

12。智能中文人名识别。中文人名识别正确率达94%以上。

jcseg佩带了jcseg.properties配置文档,使用文本编辑器就可以自主的编辑其选项,配置适合不同应用场合的分词应用。例如:最大匹配分词数,是否开启中文人名识别,是否载入词条拼音,是否载入词条同义词……。

friso

friso是使用c语言开发的一个中文分词器,使用流行的mmseg算法实现。完全基于模块化设计和实现,可以很方便的植入到其他程序中,例如:MySQL,PHP等。并且提供了一个php中文分词扩展robbe。

1。只支持UTF-8编码。【源码无需修改就能在各种平台下编译使用,加载完20万的词条,内存占用稳定为14M。】。

2。mmseg四种过滤算法,分词准确率达到了98.41%。

3。支持自定义词库。在dict文件夹下,可以随便添加/删除/更改词库和词库词条,并且对词库进行了分类。

4。词库使用了friso的Java版本jcseg的简化词库。

5。支持中英混合词的识别。例如:c语言,IC卡。

7。很好的英文支持,电子邮件,网址,小数,分数,百分数。

8。支持阿拉伯数字基本单字单位的识别,例如2012年,5吨,120斤。

9。自动英文圆角/半角,大写/小写转换。

并且具有很高的分词速度:简单模式:3.7M/秒,复杂模式:1.8M/秒

'